56 research outputs found

    Ventilation Strategies During Extracorporeal Membrane Oxygenation for Neonatal Respiratory Failure: Current Approaches Among Level IV Neonatal ICUs

    Get PDF
    To describe ventilation strategies used during extracorporeal membrane oxygenation (ECMO) for neonatal respiratory failure among level IV neonatal ICUs (NICUs). Design: Cross-sectional electronic survey. Setting: Email-based Research Electronic Data Capture survey. Patients: Neonates undergoing ECMO for respiratory failure at level IV NICUs. Interventions: A 40-question survey was sent to site sponsors of regional referral neonatal ECMO centers participating in the Children\u27s Hospitals Neonatal Consortium. Reminder emails were sent at 2- and 4-week intervals. Measurements and main results: Twenty ECMO centers responded to the survey. Most primarily use venoarterial ECMO (65%); this percentage is higher (90%) for congenital diaphragmatic hernia. Sixty-five percent reported following protocol-based guidelines, with neonatologists primarily responsible for ventilator management (80%). The primary mode of ventilation was pressure control (90%), with synchronized intermittent mechanical ventilation (SIMV) comprising 80%. Common settings included peak inspiratory pressure (PIP) of 16-20 cm H2O (55%), positive end-expiratory pressure (PEEP) of 9-10 cm H2O (40%), I-time 0.5 seconds (55%), rate of 10-15 (60%), and Fio2 22-30% (65%). A minority of sites use high-frequency ventilation (HFV) as the primary mode (5%). During ECMO, 55% of sites target some degree of lung aeration to avoid complete atelectasis. Fifty-five percent discontinue inhaled nitric oxide (iNO) during ECMO, while 60% use iNO when trialing off ECMO. Nonventilator practices to facilitate decannulation include bronchoscopy (50%), exogenous surfactant (25%), and noninhaled pulmonary vasodilators (50%). Common ventilator thresholds for decannulation include PEEP of 6-7 (45%), PIP of 21-25 (55%), and tidal volume 5-5.9 mL/kg (50%). Conclusions: The majority of level IV NICUs follow internal protocols for ventilator management during neonatal respiratory ECMO, and neonatologists primarily direct management in the NICU. While most centers use pressure-controlled SIMV, there is considerable variability in the range of settings used, with few centers using HFV primarily. Future studies should focus on identifying respiratory management practices that improve outcomes for neonatal ECMO patients

    Inhibition of Toxic Shock by Human Monoclonal Antibodies against Staphylococcal Enterotoxin B

    Get PDF
    BACKGROUND: Staphylococcus aureus is implicated in many opportunistic bacterial infections around the world. Rising antibiotic resistance and few alternative methods of treatment are just two looming problems associated with clinical management of S. aureus. Among numerous virulence factors produced by S. aureus, staphylococcal enterotoxin (SE) B is a secreted protein that binds T-cell receptor and major histocompatibility complex class II, potentially causing toxic shock mediated by pathological activation of T cells. Recombinant monoclonal antibodies that target SEB and block receptor interactions can be of therapeutic value. METHODOLOGY/PRINCIPAL FINDINGS: The inhibitory and biophysical properties of ten human monoclonal antibodies, isolated from a recombinant library by panning against SEB vaccine (STEBVax), were examined as bivalent Fabs and native full-length IgG (Mab). The best performing Fabs had binding affinities equal to polyclonal IgG, low nanomolar IC(50)s against SEB in cell culture assays, and protected mice from SEB-induced toxic shock. The orthologous staphylococcal proteins, SEC1 and SEC2, as well as streptococcal pyrogenic exotoxin C were recognized by several Fabs. Four Fabs against SEB, with the lowest IC(50)s, were converted into native full-length Mabs. Although SEB-binding kinetics were identical between each Fab and respective Mab, a 250-fold greater inhibition of SEB-induced T-cell activation was observed with two Mabs. CONCLUSIONS/SIGNIFICANCE: Results suggest that these human monoclonal antibodies possess high affinity, target specificity, and toxin neutralization qualities essential for any therapeutic agent

    Paleogene chelonians from Maryland and Virginia

    No full text
    Fossil remains of 22 kinds of Paleogene turtles have been recovered in Maryland and Virginia from the early Paleocene Brightseat Formation (four taxa), late Paleocene Aquia Formation (nine taxa), early Eocene Nanjemoy Formation (five taxa), middle Eocene Piney Point Formation (one taxon), and mid-Oligocene Old Church Formation (three taxa). Twelve taxa are clearly marine forms, of which ten are pancheloniids (Ashleychelys palmeri, Carolinochelys wilsoni, Catapleura coatesi, Catapleura sp., Euclastes roundsi, E. wielandi, ?Lophochelys sp., Procolpochelys charlestonensis, Puppigerus camperi, and Tasbacka ruhoffi), and two are dermochelyids (Eosphargis insularis and cf. Eosphargis gigas). Eight taxa represent fluvial or terrestrial forms (Adocus sp., Judithemys kranzi n. sp., Planetochelys savoiei, cf. β€œTrionyx” halophilus, β€œTrionyx” pennatus, β€œKinosternoid B,” Bothremydinae gen. et sp. indet., and Bothremydidae gen. et sp. indet.), and two taxa (Aspideretoides virginianus and Allaeochelys sp.) are trionychian turtles that probably frequented estuarine and nearshore marine environments. In Maryland and Virginia, turtle diversity superficially appears to decline throughout the Paleogene, but this probably is due to an upward bias in the local stratigraphic column toward more open marine environments that have preserved very few remains of riverine or terrestrial turtles

    Slave in a Box: The Strange Career of Aunt Jemima. By

    No full text

    Taxonomic Revision and Stratigraphic Provenance of Histiophorus rotundus Woodward 1901 (Teleostei, Perciformes)

    Get PDF
    Until recently, Histiophorus rotundus Woodward 1901, was known from a single, poorly preserved rostrum from the Tertiary phosphate beds near Charleston, South Carolina, an area from which many fossils have been described. The specimen is relatively featureless externally; its internal anatomy is unknown and the documentation of its geological provenance was poor. In an earlier revision the species was transferred to the fossil billfish genus Xiphiorhynchus Van Beneden, 1871. Here we confirm this designation, supported by new morphological studies of the holotype, recently found specimens of tXiphiorhynchus rotundus (Woodward, 1901), and the stratigraphic record of tXiphiorhynchus. The systematic paleontology we present is a contribution to the taxonomic revision of billfishes world-wide. Because the holotype is heavily phosphatized and the type locality was vaguely described, we discuss the geology of the phosphate mining districts of the Charleston region. Based on our studies, we can narrow the possible age of the holotype to late Oligocene or early Miocene. We suggest X. rotundus was extinct by the Burdigalian
    • …
    corecore